Time series modeling of plant protection products in aquatic systems in R

Analysis of governmental monitoring data

Andreas Scharmüller Mira Kattwinkel, Ralf Schäfer
Quantitative Landscape Ecology University Koblenz-Landau

Quantitative Landscape Ecology

- R and other open source software
- Ecotoxicology
- Effects of Plant Protection Products (PPP) / pesticides on the environment
- Aquatic systems

Introduction

Why study pesticides?

- Highly used in modern agriculture, gardens
- Environmental concern
- Glyphosate, Neonicotinoids, ...
- Germany (2016):
- 753 pesticides
- 270 substances
- Groups:
- fungicides
- herbicides
- insecticides
© 6
Guardian Environment
@guardianeco
EU agrees total ban on bee-harming pesticides
- À lorigine en anglais

EU agrees total ban on bee-harming pesticides
The world's most widely used insecticides will be banned from all fields within six months, to protect both wild and honeybees that are vital to crop pollination theguardian.com

Data

Data

Data

- federal monitoring program
- period: 2005-2015
- 3116 sampling sites
- 3.246.690 susbtance detections
- 495 substances
- stored in a PostgreSQL data base:

Data


```
require(RPostgreSQL)
require(data.table)
# load data
drv = dbDriver("PostgreSQL")
con = dbConnect(...)
q = "SELECT * FROM schema.tab"
dt = dbGetQuery(con, query = q)
setDT(dt)
dbDisconnect(con)
dbUnloadDriver(drv)
```

Data

Data

- Left skewed environmental data
- LOQ: Limit of quantification
- Excess of 0s
- Heterogenous data set
- Sampling frequency
- LOQ can change over time
- Measured compounds
- Seasonal variability

Comparability between substances?

- $10 \mu \mathrm{~g}$ of substance A as toxic as $10 \mu \mathrm{~g}$ od substance B?

Comparability between substances?

- $10 \mu \mathrm{~g}$ of substance A as toxic as $10 \mu \mathrm{~g}$ od substance B?

It is only the dose which makes a thing poison.

- Paracelsus

Comparability between substances?

- $10 \mu \mathrm{~g}$ of substance A as toxic as $10 \mu \mathrm{~g}$ od substance B?

It is only the dose which makes a thing poison.

- Paracelsus
- Ecotoxicological tests

- Effect Concentrations - EC50

Comparability between substances?

- $10 \mu \mathrm{~g}$ of substance A as toxic as $10 \mu \mathrm{~g}$ od substance B?

It is only the dose which makes a thing poison.

- Paracelsus
- Ecotoxicological tests
- Effect Concentrations - EC50

- EPA ECOTOX data base

Toxic Unit (TU)

in-stram concentrations ...

```
dt$value[1:3] # concentrations in \mug/L
```

\#\# [1] 0.1200 .0180 .000
... realte to effects
$T U_{\text {algae }}=\log _{10}\left(\frac{\text { concentration }}{E C 50_{\text {algae }}}\right)$

Research questions

Research questions

Are there months of increased in-stream occurrence of pesticides?

- Occurrence model:
- Binary data: concentration > LOQ: 1, concentration < LOQ: 0
- pa ~ month + year + site

How are different organism groups (Algae, Invertebrates, Fish) effected by pesticide concentrations throughout the year?

- Effect/TU-Model:
- Continuous data
- TU ~ month + site

Data preparation

Filter data

```
dt = dt[state == 'SN']
dt = dt[pest_type %in% c('fungicide', 'herbicide', 'insecticide')]
```


Filter data

```
dt = dt[state == 'SN']
dt = dt[pest_type %in% c('fungicide', 'herbicide', 'insecticide')]
```



```
uniqueN(dt$site)
## [1] 413
dt[ i = value > 0,
        j = .N,
        by = pest_type]
```

\#\# pest_type N
\#\# 1: fungicide 2455
\#\# 2: herbicide 10890
\#\# 3: insecticide 875

Filter data

Substances quantification-ratio > 5\%

```
subst_fin = dt[ ,
                    .(perc = .SD[ value > 0, .N ] / .N),
                        subst_name ][perc > 0.05][order(-perc)]
subst_fin[ , perc := round(perc,2)]
head(subst_fin)
## subst_name perc
## 1: Boscalid 0.39
## 2: Bentazon 0.38
## 3: Isoproturon 0.37
## 4: Quinmerac 0.36
## 5: Glyphosate 0.29
## 6: Azoxystrobin 0.27
nrow(subst_fin)
## [1] 31
```


Occurrence model

Occurrence model

fit the model for each substancre individually

```
mdt[ , pa := as.numeric(as.logical(value)) ]
mdt[ , time := as.numeric(date) / 1000 ]
require(mgcv)
for (i in seq_along(substances)) { # for 31 pesticides
    #
    mdt = dt[ subst == substances[i] ]
    mod_pa = gam(pa ~
            s(month, bs = 'cc', k = 12) +
                        s(time, k = 20) +
                        s(year, bs = 're') +
                        s(site, bs = 're'),
            data = mdt,
            family = binomial(link = 'logit'),
            method = 'REML')
    #
}
```


Occurrence model - Herbicides

Occurrence model - Herbicides

Occurrence model - Herbicides

Seasonal change in the occurence of herbicides pre-emergence herbicides

Occurrence model - Fungicides

Effect model

Effect model

Effect model

```
dt[ , TU_algae := log10(value / EC50_algae) ]
dt[ , TU_inv := log10(value / EC50_inv) ]
dt[ , TU_fish := log10(value / EC50_fish) ]
```


Maximum per site \& month

```
dt_agg = dt[ ,
    .(maxTU_al = max(TU_algae),
    maxTU_iv = max(TU_inv),
    maxTU_fi = max(TU_fish)),
    .(site, month) ]
```


Effect model

maximum: TU-Algae, TU-Invertebrates, TU-Fish

```
require(mgcv)
for (i in seq_along(todo)) { # for 3 TUs
    mod_al = gam(maxTU_al ~
                        s(month, bs = 'cc', k = 12) +
                        s(site, bs = 're'),
            family = gaussian(),
            data = mdt_agg,
            method = 'REML')
    #
}
```


Effect model

All organism groups (Algae, Fish, Invertebrates)

Conclusions

- Occurrence model
- identify peaks in occurence (for well measured substances)
- Effect model
- underestimation of effects
- sampling effort
- different physical chemical properties of susbstances
- Improve model
- include interactions
- refine selection of EC50 vlaues for TU calculations
- other covariates:
- percentage of agriculture in catchments
- precipitation on/before sampling date

R packages + tools

- data storage + preparation
require(RPostgreSQL)
require(data.table)
- modeling
require(mgcv)
- visualization
require(ggplot2) require(sf)
- slides
require(rmarkdown)
require(knitr)
require(xaringan)

Time series modeling of plant protection products in aquatic systems in R

Analysis of governmental monitoring data Thank you for your attention!

Andreas Scharmüller
Mira Kattwinkel, Ralf Schäfer
Quantitative Landscape Ecology
University Koblenz-Landau
シ @andschar
© scharmueller@uni-landau.de

